
CubeHash parameter tweak:

10× smaller MAC overhead

Daniel J. Bernstein ?

Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607–7045
cubehash@box.cr.yp.to

1 Introduction

CubeHashi+r/b+f–h performs i initialization rounds, r rounds for each b bytes of input,
and f finalization rounds. It then produces h bits of output.

The first-round CubeHash submission (October 2008) identified r and b as tweakable
security parameters. The time taken by CubeHash for a long message is approximately
proportional to r/b. My original recommendations for (r, b) drew criticism as making
CubeHash too slow.

The second-round CubeHash submission (September 2009) made new recommendations
for (r, b) and identified i and f as additional tweakable security parameters. CubeHash
has a per-message initialization overhead approximately proportional to i, although this is
skipped by implementations that precompute the initialization. CubeHash also has a per-
message finalization overhead approximately proportional to f ; this cannot be skipped.
My recommendations for (i, f) have drawn criticism as making CubeHash too slow for
short messages.

The most common argument for worrying about short-message hashing speed is that it
is critical for packet authentication. Consider, for example, a 1500-byte Internet packet
hashed by HMAC-CubeHash. Finalization in the second-round CubeHash submission is
comparable to hashing 320 bytes. HMAC hashes twice, incurring an extra finalization,
comparable to hashing another 320 bytes. Overall the CubeHash finalization adds 640
bytes to the original 1500, a 43% overhead. For smaller packets these 640 bytes are even
more important.

Contents of this document. This document covers three issues:

• The cost of finalization in CubeHash. This document proposes reducing the number
of finalization rounds from 160 to 32, reducing the finalization overhead by a factor of
5.

? The author was supported by the National Science Foundation under grant ITR–0716498. Date of this docu-
ment: 2010.10.31.

• The number of finalizations involved in a MAC using CubeHash. This document pro-
poses switching from HMAC to a classic prefix MAC, reducing the MAC overhead by
another factor of 2.

• The number of CubeHash options proposed for SHA-3. This document makes a new list
of specific CubeHash options that I propose for SHA-3. This document also includes
a table of security levels achieved by each of these options.

All of this is discussed in detail below.

2 Analyzing security margins

When Rijndael–256 was chosen as AES–256, it needed 10 rounds to resist all attacks that
were known at the time—but it had 14 rounds (40% extra computation) as a security
margin. Serpent–256, widely regarded as the second-place candidate, needed 10 rounds
to resist all attacks that were known at the time—but it had 32 rounds (220% extra
computation) as a security margin. The Serpent designers deliberately prioritized security,
leaving a very comfortable security margin, but were punished in evaluations of software
speed.

One can see similar variation in the SHA-3 candidates. Here are three examples:

• CubeHash8/64–256 has 0.125 rounds per input byte and resists all attacks known.
My second-round proposal CubeHash16/32–256 has 0.5 rounds per input byte (300%
extra computation) as a security margin.

• 5 rounds of ECHO-256 resist all attacks known. ECHO-256 has 8 rounds (60% extra
computation) as a security margin.

• 7 rounds of Grøstl–256 resist all attacks known. Grøstl–256 has 10 rounds (43% extra
computation) as a security margin.

The best relevant results are collision attacks estimated to take 271 simple operations
against CubeHash5/64–256; 2132 simple operations against CubeHash6/64–512; 280 simple
operations against CubeHash8/96–256; 264 simple operations against 4 rounds of ECHO-
256; and 2112 simple operations against 6 rounds of Grøstl–256.

The Rijndael-vs.-Serpent example suggests that the community does not place a large
value upon a large security margin; perhaps this is why many SHA-3 candidates have
rather small security margins. Another, more recent, example is the selection of 12-round
Salsa20/12 (50% extra computation) as part of the eSTREAM portfolio, despite the
designer’s recommendation to use 20-round Salsa20 (150% extra computation).

Arguments for a large security margin in SHA-3. Here are three arguments that
SHA-3 should have a large security margin. First, hash-function speed is important to far
fewer users than cipher speed; in almost all applications of SHA-3, something else will be
the bottleneck. My model of the future SHA-3 users is as follows:

• 1% of the users will need SHA-3 to be fast.

• 10% of the users will need SHA-3 to be small.

• 100% of the users will need SHA-3 to be secure.

In particular, users do not need HMAC to be fast, even in applications where message
authentication is a bottleneck: for years there have been extremely fast MACs that do
not rely on hash functions and that are guaranteed to be as secure as the user’s favorite
cipher. (I am not saying that fast HMAC is undesirable!)

Second, hash-function security is a considerably more complicated concept than cipher
security. There are many different hash-function applications, with several different no-
tions of security—increasing the risk that cryptanalysts evaluating SHA-3 proposals will
miss an attack relevant to some protocols and not others, and increasing the importance
of a large security margin.

Third, even in the cipher context, I think that history has shown that the Serpent designers
were right. Here is what they wrote in “The case for Serpent” in 2000:

Ciphers can also be damaged through erosion of public confidence . . . Differen-
tial and linear attacks became translated in the public mind to “DES has been
broken”. . . . Having experienced what happened to DES, we are concerned that,
in perhaps 50 years’ time, advances in mathematics will lead to a certificational
attack on 16-round Serpent. As the other AES finalists have no more margin of
safety than 16-round Serpent, they run a similar risk.

I think it’s clear to cryptographers that the recent related-key “attacks” on AES will never
be of any use for any real-world attacker, but the “attacks” have nevertheless reduced
public confidence in AES. A larger security margin would have avoided this trouble.

3 The security margin for CubeHash finalization

The second-round CubeHash proposal is

• CubeHash160+16/32+160–224 for SHA-3-224,

• CubeHash160+16/32+160–256 for SHA-3-256,

• CubeHash160+16/32+160–384 for SHA-3-384–normal,

• CubeHash160+16/32+160–512 for SHA-3-512–normal,

• CubeHash160+16/1+160–384 for SHA-3-384–formal, and

• CubeHash160+16/1+160–512 for SHA-3-512–formal,

The 160-round finalization is (except for the “formal” proposals) comparable to hashing
320 bytes, as mentioned above. This finalization is obviously massive overkill, and has
generated complaints, so it should be reduced.

There is an argument that finalization isn’t necessary at all. If an r-round transformation is
“indistinguishable from a random oracle” (or “hermetic” or some other equivalent notion

that makes theoreticians cringe) then the same r rounds can be used for each block,
including the last block. The last block has to be tagged somehow before it is processed,
and the output has to be significantly smaller than the total RAM use, but no further
protection is required.

There is a counterargument saying that finalization adds a valuable security margin
against first-preimage attacks. The last message block is transformed through r rounds
plus f finalization rounds, forcing the cryptanalyst to work backwards through many
more computations. Of course, replacing (r, f) by (r + f, 0) would achieve the same last-
block security, but it would be much more expensive in all previous blocks. Several SHA-3
candidates have f > 0: CubeHash, Fugue, Hamsi, Luffa, Shabal, and SIMD.

If finalization is very strong then it drastically limits the ways in which the cryptanalyst
can attack the rest of the hash function. As an extreme example, if finalization is “her-
metic” then the only job of previous message processing is to avoid internal collisions. (If
finalization is “hermetic” modulo some symmetries then the only job of previous message
processing is to avoid internal collisions modulo the same symmetries.) If the attacker is
unable to create internal collisions then the most that he can hope to achieve is to create
distinct finalization inputs with some sort of structure; if the finalization is strong then it
will destroy this structure.

It seems to me that a CubeHash round has, overall, similar strength to a Serpent round.
(This assessment is based on extensive third-party analysis of differential attacks on
reduced-round CubeHash. Recent linear attacks make a CubeHash round seem even
stronger than a Serpent round.) I expect 16 finalization rounds to be secure for every
standard application, and in particular for the PRF/MAC applications discussed in more
detail below. I therefore recommend 32 finalization rounds, providing a very comfortable
security margin. I also recommend 16 initialization rounds.

4 CubeMAC

The standard approach to constructing a secure MAC is to construct a “PRF”; i.e., a
secure cipher; i.e., a cipher whose outputs for distinct inputs are indistinguishable from
uniform; i.e., a cipher whose outputs for distinct inputs are indistinguishable from inde-
pendent uniform random strings. For example, AES with a secret 256-bit key is believed
to be indistinguishable from uniform when the number of inputs is significantly below 264.
(“Related-key attacks” are irrelevant to the PRF concept.)

The obvious problem with this approach is that typical ciphers take only short fixed-
length inputs: for example, AES takes only a 128-bit input. The standard solution is to
start with a compression layer that maps long variable-length inputs to short fixed-length
outputs. There are extremely fast “universal hash functions” that use a secret key and that
are guaranteed to be information-theoretically secure in this context: if all relevant sizes
are chosen sensibly then the attacker has negligible probability of finding two colliding

messages. It is easy to prove that the resulting MAC is indistinguishable from uniform,
and therefore a secure MAC, if the original cipher is indistinguishable from uniform.

HMAC and NMAC follow this approach, using a cryptographic hash function such as
SHA-1 for both layers. A message m is first hashed to h = SHA-1(k1,m), and then the
hash is encrypted to SHA-1(k2, h). It is easy to prove that SHA-1(k2, SHA-1(k1,m)) is
indistinguishable from uniform, and therefore a secure MAC, if two hypotheses hold: first,
SHA-1(k1,m) has low collision probability; second, SHA-1(k2, h) is indistinguishable from
uniform on 160-bit inputs h. Neither of these hypotheses has been disproven, and if SHA-1
is replaced by something stronger then both hypotheses become very easy to believe.

Why not simply use SHA-1(k1,m) as a MAC? The answer is that SHA-1 is vulnerable
to trivial length-extension attacks: the structure of SHA-1 means that SHA-1(k1,m) re-
veals SHA-1(k1,m

′) for many extensions m′ of m. But all of the SHA-3 candidates avoid
this problem. For wide-pipe candidates with very strong finalization—in particular, for
CubeHash—it is clear that the extra work in NMAC and HMAC does not accomplish
anything. The state before finalization determines the key that was used (in the absence
of internal collisions), so re-injecting the key is redundant; finalization then hides the state
as effectively as a subsequent hash would.

I therefore propose CubeMAC: put a 512-bit secret key in front of the input message, feed
the result to CubeHash, and use the output directly as a MAC. The overhead for this
MAC is the overhead for a single finalization, comparable to hashing just 64 bytes—ten
times smaller than the second-round HMAC-CubeHash proposal. For short messages the
total cost of computing the MAC is comparable to hashing 96 bytes, if the CubeHash
state after the secret key is precomputed.

I don’t claim that CubeMAC is competitive in performance with non-hash-based MACs.
However, it is faster, often much faster, than HMAC-SHA-256 and HMAC-SHA-512 for
all message lengths across a huge range of software and hardware platforms. CubeMAC
also provides exceptionally low hardware complexity for a combined high-security hash-
and-MAC unit.

5 Impact of tweaks upon existing analysis

Some SHA-3 candidates have advertised the fact that they haven’t been tweaked. This
is not an unreasonable advertisement—I think that tweaks can cause some big problems.
However, these problems aren’t applicable to the CubeHash tweaks.

The main problem with tweaks is that they burn cryptanalytic time, the most valuable
resource in the SHA-3 competition. Often a tweak responds directly to cryptanalytic
results, with the explicit goal of undermining those results; some examples are

• the existing tweak to BMW (to undermine some free-start “attacks”),

• the announced tweak to Grøstl (to undermine some reduced-round collision attacks),

• the existing tweak to SHAvite-3 (to undermine some free-start chosen-counter chosen-
salt “attacks”),

• the announced tweak to SHAvite-3 (same), and

• the announced tweak to Skein (to undermine some reduced-round related-key “at-
tacks”).

Even if a tweak is not intended to undermine any particular result, it forces cryptanalysts
to spend time carefully reviewing previous work to see whether the work has been affected
by the tweak.

This problem does not occur for tweaks that merely change recommendations for se-
curity parameters: for example, the existing tweak to CubeHash (extra rounds, larger
blocks), the existing tweak to Keccak (extra rounds, larger blocks), and the new tweak to
CubeHash (reduced finalization). Cryptanalysts were already free to adjust the security
parameters; whatever analysis they did, with whatever security parameters they chose,
remains perfectly valid analysis of the tweaked function (assuming it was valid to begin
with)—because the function didn’t actually change! In particular:

• All of the larger-block-size analysis of CubeHash remains perfectly valid larger-block-
size analysis of CubeHash.

• All of the reduced-round analysis of CubeHash remains perfectly valid reduced-round
analysis of CubeHash.

• All of the reduced-finalization analysis of CubeHash remains perfectly valid reduced-
finalization analysis of CubeHash.

There is no need to spend time checking anything.

Of course, these tweaks do require new benchmarking. However, benchmarking time is
completely different from cryptanalytic time; benchmarking time is not a precious resource
that needs to be spent carefully.

6 Analyzing the number of options in SHA-3

“Be specific about which variants you are proposing,” NIST stated at the Second SHA-3
Candidate Workshop. “Fewer variants is better.”

Every SHA-3 proposal is required to include at least four different options: an option
providing 224-bit output (with 2224 security), an option providing 256-bit output (with
2256 security), an option providing 384-bit output (with 2384 security), and an option
providing 512-bit output (with 2512 security).

For the majority of the SHA-3 proposals there are more than four options—often many
more. This section discusses the core arguments for and against multiple options.

Flexibility. The core argument for additional options is that additional flexibility will be
useful for the SHA-3 users. NIST already encouraged flexibility in its call for submissions:

Candidate algorithms with greater flexibility will meet the needs of more users
than less flexible algorithms, and therefore, are preferable. However, some extremes
of functionality are of little practical use (e.g., extremely short message digest
lengths)—for those cases, preference will not be given.

NIST gave three examples of possible types of flexibility. Two of the examples are of
implementation flexibility for a single hash function, but one of the examples means
having a wider range of hash functions: “The algorithm has a tunable parameter which
allows the selection of a range of possible security/performance tradeoffs.”

The Keccak SHA-3 proposal specifies two different hash functions with 512-bit output:
Keccak[c=1024]-512 and the “default” Keccak[]-512. There is a tradeoff between security
and efficiency: Keccak[]-512 is faster, and is the topic of practically all of the Keccak speed
advertisements, but limits the user to “only” 2288 preimage security.

There are also two different 512-bit CubeHash options, two different 512-bit ECHO options
(ECHO-DP and ECHO-SP), two different 512-bit Fugue options (after an upcoming tweak
announced by the designer), and two different 512-bit Skein options (Skein-512-512 and
Skein-1024-512). In each case the user is given the choice between a lower-performance
higher-security 512-bit option and a higher-performance lower-security 512-bit option.

There are other types of flexibility. ECHO advertises as an advantage its “smooth support—
using the same implementation—of any hash output of length from 128 to 512 bits.” Skein
similarly says that its support for “any output size” simplifies “many applications.” Luffa
says that its design “allows to generate bit strings of arbitrary length by iterating the
output function OF and the round function Round. This feature is useful for some appli-
cations.”

BLAKE provides another type of option: a “built-in salt.” It explicitly says that providing
an “interface for hashing with a salt” is an advantage and that this option “simplifies a lot
of things; it provides an interface for an extra input, avoids insecure homemade modes, and
encourages the use of randomized hashing.” SHAvite-3 and Skein have similar options.
Skein and Keccak also offer encryption options, tree options, etc., in each case arguing
that this flexibility will be helpful for some SHA-3 users.

Interoperability. Supporting many hash options usually requires much more space—
RAM, code size, hardware area, etc.—than supporting just a few options. This poses
serious problems for platforms that have hard space limits: RFIDs, for example, and tiny
microcontrollers. It also poses serious problems for typical embedded “system on chip”
applications: hashing has to compete with many other functions for chip area.

Hardware designers often react to this problem by implementing only the options, or single
option, that they need today. For example, if a protocol today needs SHA-256, hardware
designers are not likely to burn both SHA-256 and SHA-512 into a chip supporting the
protocol; burning just SHA-256 into the chip costs far less area. Upgrading the protocol
to support SHA-512 then requires an extremely expensive hardware upgrade.

These issues are discussed in more detail in my paper “SHA-3 interoperability.” NIST’s
call for submissions already recognized the value of interoperability—

For interoperability, NIST strongly desires a single hash algorithm family (that is,
that different size message digests be internally generated in as similar a manner
as possible) to be selected for SHA3.

—although it did not identify unified-option hardware area as a way of quantifying this
value.

Does this interoperability argument mean that a function with a smaller number of options
is better than a function with a larger number of options? Not necessarily. Perhaps all of
the options for the second function can be implemented together in less hardware area
than the first function—making the second function better from this perspective.

Avoiding bait and switch. SuperHash is much more efficient than BoringHash: look
at these benchmarks showing how small and fast SuperHash-256 is compared to Bor-
ingHash! SuperHash is also much stronger than BoringHash: look at how many rounds
SuperHash-512 has, and how massive the internal SuperHash-512 pipes are, clearly much
more confidence-inspiring than BoringHash!

But maybe SuperHash-256 is horrifyingly insecure, while SuperHash-512 is so inefficient
as to be practically unimplementable, making all users unhappy with SuperHash. Maybe
BoringHash is reasonably secure and efficient, making practically all the users happy.

One can view this hypothetical SuperHash example as an argument to minimize the
number of options. Allowing many options allows easy bait-and-switch advertising: the
designer creates one function with high security, one function that runs quickly in software,
one function that fits into a few FPGA slices, etc., and bundles these different functions
together into a single SuperHash package. Having a single option eliminates any possibility
of this deception.

On the other hand, maybe SuperHash really is better than BoringHash. Maybe the ef-
ficiency of SuperHash-256 is accompanied by a perfectly acceptable security level, while
the security of SuperHash-512 is accompanied by perfectly acceptable efficiency. Perhaps
SuperHash is providing two attractive options for the users, where each option is better
than anything BoringHash can provide.

It seems to me that the right way to analyze the merits of a SHA-3 proposal—whether the
proposal is a small collection of hash functions or a large collection of hash functions—is
to ask how happy the users will be with the proposal. Given this SHA-3 proposal, Alice
will look for the option that best meets Alice’s requirements; the first question is what
Alice’s requirements are (security, throughput, area, interoperability, etc.), the second
question is which option will best meet those requirements, and the third question is how
this compares to other SHA-3 proposals. Bob will look for the SHA-3 option that best
meets Bob’s requirements, raising the same set of questions for Bob. And so on.

Avoiding complexity of cryptanalysis. SHAvite-3’s salt turned out to have less diffu-
sion than desired, allowing a series of free-start chosen-counter chosen-salt “attacks” that
would not have been possible if the salt option had been omitted.

I don’t think this should be counted against SHAvite-3: I don’t see how any sane protocol
could allow these “attacks,” and I don’t think it’s fair to punish SHAvite-3 for a salt
problem when most SHA-3 submissions don’t support salts at all. However, this example
illustrates the principle that proposals with many options usually have more opportunities
for security problems than proposals with just a few options.

Even if no security problems are found, proposals with many options usually consume more
cryptanalytic time than proposals with just a few options. The diffusion of cryptanalytic
effort reduces public confidence in these proposals.

On the other hand, the number of options is merely one contributor to cryptanalytic time.
BMW, for example, has very few options but is widely reported as requiring tremendous
effort for cryptanalysts to understand and analyze.

7 The number of options in CubeHash

This document proposes a new list of exactly 8 CubeHash options. This section discusses
the choice of options, and analyzes the merits of the options according to the criteria
discussed in the previous section.

Interoperability. CubeHash was designed to fit all options—including the first-round
options, the second-round options, and the new list of options proposed here—into one
very small circuit, avoiding interoperability problems and minimizing hardware costs.
The area required for supporting all options is practically identical to the area required
for a single option. Interoperability is therefore not an argument against the number of
CubeHash options.

There are four other SHA-3 candidates (ECHO, JH, Keccak, and Shabal) that allow all
options to fit naturally together into the same circuit, although the circuit is not as small
as CubeHash. There is one other SHA-3 candidate (Skein) that has part of the same
feature: Skein-512-256 and Skein-512-512 fit naturally together into the same circuit, but
Skein-256-256 and Skein-512-512 do not. The other eight SHA-3 candidates handle extra
options using extra hardware.

Flexible output sizes: 6 options. The minimum possible number of options allowed
by the SHA-3 rules is 4, to match the 4 different output sizes allowed by SHA-2: “the
submitted algorithms for SHA3 must provide message digests of 224, 256, 384 and 512
bits to allow substitution for the SHA2 family.”

Some SHA-3 teams have argued that 160-bit and 128-bit options will be useful as drop-in
replacements for SHA-1 and MD5. I agree. This document proposes 160-bit and 128-bit
options for CubeHash, supplementing the existing proposals of 224-bit, 256-bit, 384-bit,

and 512-bit options. I see far more value in the 160-bit and 128-bit options than in the
224-bit and 384-bit options!

The underlying facts are that (1) SHA-1 and MD5 remain very widely used in a variety
of existing applications and (2) many of those applications randomize their hash inputs,
making 160-bit hashes quite safe until quantum computers are built, and even making
128-bit hashes reasonably safe. NIST stated in its call for submissions that substituting
for SHA-1 “is not contemplated” since 160-bit hashes are “becoming too small to use for
digital signatures”; but this statement takes an overly narrow view of the applications of
hash functions.

Insane security levels: 1 extra option. Of course, cryptographers interested in long-
term security do not recommend 128-bit or 160-bit hashes, and often do not recommend
224-bit or 256-bit hashes. Continued reductions in the cost of computation, combined
with continued progress towards quantum computers, provide many reasons to question
the long-term security of 256-bit hashes. However, 512-bit hashes are clearly overkill.

NIST required a 512-bit SHA-3 option with 2512 preimage security to match SHA-512,
not to match the security needs of the SHA-3 users. Some SHA-3 candidates also offer
a faster option with 512-bit output but lower security, arguing that the lower security
level is perfectly adequate. Keccak is one example, providing “only” 2288 security for its
default 512-bit option, as discussed in the previous section. CubeHash is another example,
providing “only” 2384 security for its default 512-bit option.

Every SHA-3 candidate uses at least 1024 bits of RAM to reach a 2512 security level.
CubeHash uses exactly 1024 bits at this security level (and at other security levels, for
interoperability), with a very small block size and therefore many rounds per byte. Re-
ducing the expected security level from 2512 to 2384 allows CubeHash to increase its block
size to 256 bits, making it much faster.

Pushing Keccak from 2288 security up to 2512 security decreases the block size from 1024
bits to 576 bits. Keccak sacrifices only about a factor of 2 in speed here, because Keccak
maintains a large block size—but this forces Keccak to have a very large state, 1600 bits.
I don’t like this approach: it improves speed for users who want an insane security level,
but it punishes users who need to hash on small platforms, and I think it’s obvious that
the second group of users is much more important.

Luffa takes a different approach. It has only one 512-bit option, Luffa-512, providing 2512

security. It also has a 256-bit option, Luffa-256, that fits into relatively small hardware
(although not as small as CubeHash!). I also don’t like this approach: it creates severe
interoperability problems.

The second-round CubeHash proposal has two 512-bit options, both supported by the
same very small hardware but providing different security/performance tradeoffs. This
document maintains those options, except for reducing the finalization as discussed above.
My model is that 99% of all users will be satisfied with the speed of either option, and
that all sane users will be satisfied with the security level of either option; but the higher-

speed option will be important for 1% of users, and the higher-security option might be
important to meet formal checklists. The only dissatisfied users will be users who need
high speed at an insane security level.

The second-round CubeHash proposal also has two 384-bit options. Both options provide
the same security level against all attacks known, but one of them makes narrow-pipe
attacks even more difficult. I’ve decided to discard the slower option; anyone who wants
that type of overkill should move up to the 512-bit hash.

Faster MAC: 1 extra option. HMAC automatically turns each CubeHash option into
an HMAC-CubeHash option. This document supplements this HMAC spectrum with a
faster MAC option (a prefix MAC, as discussed earlier): CubeMAC128, with a 512-bit
key and 128-bit output.

There is no need in the foreseeable future for a MAC longer than 128 bits. Communication
is fundamentally more expensive than computation. An attacker with a billion parallel
super-high-speed network connections, flooding each network connection with a billion
forged packets per second for a million years, will still have only one chance in ten million
of bumping into a correct 128-bit authenticator.

PRF applications also do not need longer outputs. The PRF strength of CubeMAC128 is
not limited to the preimage security of CubeHash128: finding a single 128-bit preimage is
of no use for an attacker trying to break a PRF with a 512-bit key. The attacker needs to
perform a massive brute-force search to find a key compatible with several CubeMAC128
outputs.

Applications that need more than 128 bits of PRF output can use CubeMAC128 repeat-
edly on varying inputs. I have considered specifying CubeMAC256 to accelerate these
applications, but applications that need a very fast PRF will be better served by a sepa-
rate stream cipher.

Avoiding bait and switch. CubeHash has always had an extremely straightforward
performance profile: all options use the same hardware area, and all recommended options
run at the same speed. The only deviation is that CubeHash becomes much slower when
it is pushed to an insane, non-recommended security level.

JH and Shabal also have flat performance profiles across all recommended options. All
other SHA-3 candidates have performance variability between their lower-security recom-
mendations and their higher-security recommendations. Many of those candidates have
already engaged in clear-cut cases of bait-and-switch advertising.

For example, the Skein team has frequently advertised the small hardware area required
for Skein-256 (i.e., Skein-256-256), and the speed of Skein-512, but many of these ad-
vertisements do not mention how slow Skein-256 is or how large Skein-512 is. When an
independent evaluation team at the Second SHA-3 Candidate Workshop reported the
slowness of Skein-256, the Skein team objected that Skein-512 should have been used in-
stead, and convinced the authors to eliminate Skein-256 from their report. The Skein web

site nevertheless continues to say “Small devices, such as 8-bit smart cards, can implement
Skein-256 using about 100 bytes of memory.”

Avoiding complexity of cryptanalysis. CubeHash has already been widely recognized
as an exceptionally simple hash function, easily accessible to cryptanalysts. The 8 Cube-
Hash options together are much easier to analyze than a single option in a typical SHA-3
submission.

CubeHash offers cryptanalysts a wide range of reduced-round variants and increased-
block-size variants, far beyond the limited range of options proposed for SHA-3. These
extra variants do not make CubeHash more complicated to analyze; they make CubeHash
easier to analyze, by providing a way to measure and focus cryptanalytic progress.

The different CubeHash output lengths have no effect on message processing. The IV
depends on the output length, but analyzing the merits of 4 IVs is not significantly easier
than analyzing the merits of 5 or 6 or 7 IVs. The final state is simply truncated to
the desired output length, so shorter-output cryptanalysis is simply a restricted type of
longer-output cryptanalysis. This restriction has no effect on “internal” cryptanalysis, and
“external” cryptanalysis has naturally focused on the easiest case of 512-bit output, so
adding 160-bit and 128-bit options will again have no effect. Note that CubeHash does
not attempt to use a smaller number of rounds for a smaller output size.

The two 512-bit CubeHash options vary in message processing: one of them uses a 32-
byte block, while the other uses a 1-byte block. The 1-byte block can be viewed as a
32-byte block in which 31 bytes are required to be 0, so 1-byte cryptanalysis is simply
a restricted type of 32-byte cryptanalysis. Cryptanalysis of CubeHash, starting from the
original submission, has consistently treated the block size as a variable.

MAC analysis is indisputably extra complexity on top of collision analysis, preimage
analysis, etc., but it is not avoidable complexity: all SHA-3 candidates are required to
support HMAC. The new CubeMAC can be viewed as the first stage of HMAC-CubeHash,
and analysis of that stage was already a natural stepping-stone to analysis of HMAC-
CubeHash.

8 Specification of the new CubeHash proposal

This document defines

• “CubeHash128” as CubeHash16+16/32+32–128 (i.e., CubeHash with 16 initialization
rounds, 16 rounds for each 32 bytes of input, 32 finalization rounds, and 128 bits of
output);

• “CubeHash160” as CubeHash16+16/32+32–160;

• “CubeHash224” as CubeHash16+16/32+32–224;

• “CubeHash256” as CubeHash16+16/32+32–256;

• “CubeHash384” as CubeHash16+16/32+32–384;

• “CubeHash512” as CubeHash16+16/32+32–512;

• “CubeHash512x” as CubeHash16+16/1+32–512; and

• “CubeMAC128” as CubeHash16+16/32+32–128 where a 512-bit (not 128-bit) secret
key is prepended to the input.

This document further proposes CubeHash for SHA-3, specifically with the following
standard options:

• “AHS128” defined as CubeHash128;

• “AHS160” defined as CubeHash160;

• “AHS224” defined as CubeHash224;

• “AHS256” defined as CubeHash256;

• “AHS384” defined as CubeHash384;

• “AHS512” defined as CubeHash512;

• “AHS512x” defined as CubeHash512x; and

• “AMAC128” defined as CubeMAC128.

9 Expected strength

The following table shows the expected cost of preimage attacks and collision attacks
against each of the CubeHash hash-function proposals. All costs are expressed in bit
operations (including no-ops spent by idle transistors in parallel circuits), or in qubit
operations for quantum computers. Each exponent contains a “+ε” to account for issues
such as the number of bit operations required to evaluate a CubeHash round, the number
of attack repetitions required for success, etc. Minor attack optimizations often affect ε
but make no difference in the big picture.

post-quantum post-quantum

function preimage collision preimage collision

CubeHash128 2128+ε bit ops 264+ε bit ops 264+ε qubit ops 264+ε qubit ops

CubeHash160 2160+ε bit ops 280+ε bit ops 280+ε qubit ops 280+ε qubit ops

CubeHash224 2224+ε bit ops 2112+ε bit ops 2112+ε qubit ops 2112+ε qubit ops

CubeHash256 2256+ε bit ops 2128+ε bit ops 2128+ε qubit ops 2128+ε qubit ops

CubeHash384 2384+ε bit ops 2192+ε bit ops 2192+ε qubit ops 2192+ε qubit ops

CubeHash512 2384+ε bit ops 2256+ε bit ops 2192+ε qubit ops 2192+ε qubit ops

CubeHash512x 2512+ε bit ops 2256+ε bit ops 2256+ε qubit ops 2256+ε qubit ops

The entries in this table were calculated as follows:

• Preimage attacks: Short-output attacks (exponent h) are usually best, except that
narrow-pipe attacks (exponent slightly above 512−4b) are best against CubeHash512.

See the “Complexity of generic attacks” appendix in the original CubeHash submission
for details.

• Collision attacks: Short-output attacks (exponent h/2) are better than narrow-pipe
attacks for all of these proposals.

• Quantum preimage attacks: Half the preimage-attack exponent (as in the second-round
CubeHash submission), following the attacker’s most optimistic view of what Grover’s
quantum algorithm can achieve.

• Quantum collision attacks: Minimum of the above exponents.

A frequently quoted 1998 paper by Brassard, Høyer, and Tapp claims that its quantum
collision attack achieves exponent h/3. That claim is incorrect and is not reflected in the
above table. See my paper “Cost analysis of hash collisions” for further discussion of this
issue.

CubeMAC security. The following table shows the expected cost of PRF attacks and
MAC attacks against CubeMAC128. The cost of PRF attacks (distinguishing outputs
from uniform) is measured in bit operations, or qubit operations for quantum computers,
as above. The cost of MAC attacks (forging a MAC) is measured in bits transferred. Of
course, PRF attacks can also be used to break the MAC; the attacker’s overall success
probability combines the PRF attack success probability (computation compared to the
table below) with the MAC success probability (network transmission compared to the
table below).

post-quantum

function PRF PRF MAC

CubeMAC128 2256+ε bit ops 2192+ε qubit ops 2128+ε bits

The entries in this table were calculated as follows: the PRF security of CubeMAC128
is expected to at least match the collision security of CubeHash512; the 128-bit output
length reduces MAC security to 2128+ε.

