
CubeHash specification (2.B.1)

Daniel J. Bernstein ?

Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607–7045
cubehash@box.cr.yp.to

Algorithm summary. CubeHashr/b–h produces an h-bit digest of a variable-
length message. The digest depends on two tunable parameters r, b that al-
low the selection of a range of security/performance tradeoffs. CubeHash is
defined for each h ∈ {8, 16, 24, . . . , 512}, each r ∈ {1, 2, 3, . . . , 128}, each b ∈
{1, 2, 3, . . . , 128}, and each message length from 0 bits through 2128 − 1 bits.

Third-party cryptanalysts are encouraged to start with large values of b and
small values of r. Third-party cryptanalysts are also encouraged to consider
VCHi+r/b+f–h, a variant of CubeHash in which the 10r initialization rounds
and 10r finalization rounds are replaced by i initialization rounds and f final-
ization rounds.

Algorithm specification. There have not been, and will not be, changes in
the definition of CubeHashr/b–h. The following definition is identical to the
definition in the original CubeHash submission.

CubeHashr/b–h has five major steps:

• Initialize a 128-byte (1024-bit) state as a function of (h, b, r).
• Convert the input message into a padded message. The padded message

consists of one or more b-byte blocks.
• For each b-byte block of the padded message: xor the block into the first b

bytes of the state, and then transform the state invertibly through r identical
rounds.
• Finalize the state.
• Output the first h/8 bytes of the state.

Initialization works as follows. The 128-byte state is viewed as a sequence of
32 4-byte words x00000, x00001, x00010, x00011, x00100, . . . , x11111, each of which is
interpreted in little-endian form as a 32-bit integer. The first three state words
x00000, x00001, x00010 are set to the integers h/8, b, r respectively. The remaining
state words are set to 0. The state is then transformed invertibly through 10r
identical rounds.

Padding works as follows. Append a 1 bit to the input message; then append
the minimum possible number of 0 bits to reach a multiple of 8b bits. The bits
in a byte are first 128, then 64, then 32, then 16, then 8, then 4, then 2, then 1.

? The author was supported by the National Science Foundation under grant ITR–
0716498. Date of this document: 2009.09.14.



(History suggests that some, perhaps most, implementations will be restricted
to byte-aligned inputs. These implementations can simply append a 128 byte and
then the minimum possible number of 0 bytes to reach a multiple of b bytes.)

Note that this padding does not require separate storage of the message
length, the block to be processed, etc. The implementor can simply store a
single integer between 0 and 8b to record the number of bits processed so far
within the current block.

Finalization works as follows. The integer 1 is xored into the last state word
x11111. The state is then transformed invertibly through 10r identical rounds.

Each round has the following ten steps:

• Add x0jklm into x1jklm modulo 232, for each (j, k, l, m).
• Rotate x0jklm upwards by 7 bits, for each (j, k, l, m).
• Swap x00klm with x01klm, for each (k, l,m).
• Xor x1jklm into x0jklm, for each (j, k, l, m).
• Swap x1jk0m with x1jk1m, for each (j, k,m).
• Add x0jklm into x1jklm modulo 232, for each (j, k, l, m).
• Rotate x0jklm upwards by 11 bits, for each (j, k, l, m).
• Swap x0j0lm with x0j1lm, for each (j, l, m).
• Xor x1jklm into x0jklm, for each (j, k, l, m).
• Swap x1jkl0 with x1jkl1, for each (j, k, l).

That’s it.

Application specification. CubeHash–h can be used in the same contexts
as SHA–h. Applications such as HMAC that pad to a full block of SHA–h in-
put are required to pad to a full minimal integral number of b-byte blocks for
CubeHashr/b–h.

Parameter recommendations. The original CubeHash submission proposed
CubeHash8/1 as SHA–3 and stated the following justification:

For most applications of hash functions, speed simply doesn’t matter.
High-volume network protection with HMAC is sometimes cited as an
exception, but anyone who really cares about speed shouldn’t be using
HMAC anyway; other MACs are faster and inspire more confidence.

What about the occasional applications where hashing speed does mat-
ter? If, after third-party cryptanalysis, the community is convinced that
much faster CubeHashr/b choices are perfectly safe, then I expect those
choices to be considered in speed-oriented applications.

NIST subsequently issued some clarifications of how speed and security would
be evaluated in the SHA–3 competition. The clarifications showed, among other
things, that CubeHash8/1 was much more conservative than necessary.

I submitted a document “CubeHash parameter tweak: 16 times faster” to
NIST on 2009.07.15 proposing

• CubeHash16/32–224 for SHA–3–224,



• CubeHash16/32–256 for SHA–3–256,
• CubeHash16/32–384 for SHA–3–384–normal,
• CubeHash16/32–512 for SHA–3–512–normal,
• CubeHash16/1–384 for SHA–3–384–formal, and
• CubeHash16/1–512 for SHA–3–512–formal.

The “SHA–3–512–formal” proposal is aimed at users who are (1) concerned with
attacks using 2384 operations, (2) unconcerned with quantum attacks that cost
far less, and (3) unaware that attackers able to carry out 2256 operations would
wreak havoc on the entire SHA–3 landscape, forcing SHA–3 to be replaced no
matter which function is selected as SHA–3. The “SHA–3–512–normal” proposal
is aimed at sensible users. For all real-world cryptographic applications, the
“formal” versions here can be ignored, and the tweak amounts to a proposal of
CubeHash16/32 as SHA–3.

CubeHash16/32 is approximately 16 times faster than CubeHash8/1, easily
catching up to both SHA-256 and SHA-512 on the reference platform. Despite
this speed, CubeHash16/32 is a conservative proposal with a comfortable secu-
rity margin. The best attacks known against CubeHash16/32 are the attacks
explained in the original CubeHash submission documents. See the separate
document “CubeHash attack analysis” for discussion of reduced-round crypt-
analysis.

Design rationale and explanation. CubeHash does not include block coun-
ters, block randomizers, etc. The entire argument for those complications is that
state collisions are generically easy to find (compared to the desired preimage
security); but this argument breaks down when the state size is large enough. A
generic attack using an unimaginable 2400 operations has an utterly negligible
chance of finding a collision in CubeHash’s 1024-bit state. In the absence of state
collisions, the state determines the entire previous message, so it determines the
block counter, any block randomizer included earlier in the message, etc.

One might argue that there is no loss in security from including block coun-
ters etc. However, if there is no gain in security, then it makes more sense to
devote the same resources to confidence-building measures such as increasing r
or decreasing b.

Similarly, there is no need to break any of the symmetries of the CubeHash
round. The initial CubeHash states do not have any of those symmetries, and
if b is not too large then the attacker does not have enough control to force a
symmetric state or a pair of states related by those symmetries. I wouldn’t be
surprised if an asymmetric round allows slightly smaller r/b, but it seems to me
that this benefit would be outweighed by the cost in efficiency of each round.

The basic operations in CubeHash—32-bit add, 32-bit xor, and fixed-distance
32-bit rotation—have the virtue of taking constant time on typical CPUs; most
implementations will avoid all software-level side-channel leaks. For compari-
son, most AES software implementations leak their keys through cache timing,
prompting Intel to add constant-time AES instructions to its future “Westmere”
CPUs.



The CubeHash round is designed to spread changes very quickly through the
1024 state bits. The additions and xors directly spread xijklm changes along the
i axis of the (i, j, k, l,m) hypercube; the first swap prevents changes from being
confined along the j axis; the second, third, and fourth swaps do the same for
the l, k, and m axes respectively; the rotations move changes through the 32 bit
positions within each word, in particular diffusing changes from high bits to low
bits. Alternation between add and xor is a common technique to maximize the
apparent randomness of carry bits.

The rotation distances 7, 11 in CubeHash were chosen as follows. Notice that,
modulo 32, {0, 7}+{0, 11}+{0, 7}+{0, 11} = {0, 4, 7, 11, 14, 18, 22, 25, 29}, with
a maximum gap of 4, which is obviously best possible; {0, 7}+{0, 11}+{0, 7} =
{0, 7, 11, 14, 18, 25}, with a maximum gap of 7, which is best possible given the
4; {0, 7}+ {0, 11} = {0, 7, 11, 18}, with a maximum gap of 0− 18 = 14, which is
best possible given the (4, 7). The only other ways to achieve (4, 7, 14) are with
rotation distances 7, 21 or 11, 25 or 21, 25; I took the first choice 7, 11. Carries
also provide some diffusion across nearby bit positions, so the exact choice of
rotation distances doesn’t seem terribly important.

Security arguments and preliminary analysis. “Provable security” can be
a helpful guide to cryptanalysis, allowing cryptanalysts to focus their energies on
the potentially breakable components of a hash function. For example, most hash
functions are built as modes of operation of compression functions; a sufficiently
powerful security proof for a mode of operation lets cryptanalysts focus on the
compression function, confident that the mode per se has no problems. Building
confidence in the hash function then boils down to building confidence in the
compression function, hopefully a simpler task.

CubeHash takes a different approach to building confidence: the entire hash
function is very simple and easy to understand, in fact simpler than most com-
pression functions. CubeHash is not built from a lower-level primitive, so there
are no reduction proofs, but I don’t see this as a disadvantage; the real ques-
tion is not how much work the cryptanalyst can skip, but how much work the
cryptanalyst still has to do.

CubeHash offers an array of fast variants as targets for cryptanalysis. The
main security argument for any particular CubeHashr/b will always be that the
parameters (r, b) are beyond the limits of state-of-the-art attacks.

Preliminary analysis of collision-finding, preimage-finding, second-preimage-
finding, length-extension attacks, multicollision attacks, etc.: These attacks ap-
pear to be extremely difficult. See the separate “attack analysis” document.

Additional comments on symmetries. The design rationale, explanation,
and security arguments stated above are unchanged from the original CubeHash
submission. NIST has requested additional explanation of the rationale for the
CubeHash symmetries. The short answer is that these symmetries have obvious
benefits (in code size, for example) and do not pose a security problem.

A completely symmetric hash function would be bad. For example, imagine a
hash function where rotating the state (1) rotates each message block, (2) does
not change the initialization, (3) does not change the message injection, and



(4) does not change the rounds. Messages with rotation-symmetric blocks will
then produce rotation-symmetric states, allowing the attacker to find disastrous
internal collisions if the set of rotation-symmetric states is not very large.

Designers often react to this type of attack by adding ad-hoc asymmetries
everywhere—the rounds, the message injection, etc. However, I am convinced
that symmetric rounds and symmetric message injection do not pose inherent
security problems as long as the initial state is asymmetric. I will withdraw
CubeHash from the SHA–3 competition if anyone can show me a CubeHash16/32
input message that produces a symmetric state, or a pair of CubeHash16/32
input messages leading to a symmetric pair of states; I am confident that nobody
will be able to meet this challenge.


