
CubeHash features (2.B.6)

Daniel J. Bernstein ?

Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607–7045
cubehash@box.cr.yp.to

This statement lists and describes the advantages and limitations of the
CubeHash family of hash functions. This statement is not meant to exclude
the possibility of further advantages and limitations being discovered during the
SHA–3 candidate evaluation process.

Small area requirements. CubeHashr/b xors b bytes of input into the first
b bytes of a 128-byte state. It then modifies the state in place and moves on
to the next b bytes of input. This 128-byte state is small enough to fit into
software environments having very little memory. The modifications are simple
and regular, so CubeHash can also fit into small area on an FPGA or ASIC.

For comparison, although SHA–256 can store its state between blocks in just
32 bytes (plus 8 bytes for a message-length counter), SHA–256 needs at least
128 bytes to process a block: 32 bytes for the current state, 32 bytes for the
beginning-of-block state, and 64 bytes for the current segment of the message
schedule. SHA–512 needs at least 256 bytes.

Unified implementation across output sizes. A circuit that implements
both CubeHashr/b–512 and CubeHashr/b–256, and runs either one at the same
speed, is only marginally more expensive than a circuit that implements just
CubeHashr/b–256.

Most hash functions become two or three times larger in the 256-and-512-
area metric: they require double-size states, separate control circuits, etc. One
can expect most hardware implementations to be limited to the smaller size, the
same way that most SHA–2 hardware implementations are limited to SHA-256,
posing problems for users considering a switch to a longer output size. CubeHash
does not have this problem.

Small code size and vector-code size. CubeHash fits into a very small
amount of instruction space. Optimized CubeHash implementations using vector
instructions are also quite small. This feature is useful not only for small devices
but also for busy Internet servers: a CPU has a limited amount of space in its
instruction cache, and becomes much slower if frequently used instructions do
not fit into that cache.

Parallelizability. Each step of CubeHash consists of 16 independent operations
on 32-bit words. The operations are parallelizable and vectorizable, providing
? The author was supported by the National Science Foundation under grant ITR–

0716498. Date of this document: 2009.09.14.



tremendous flexibility for the implementor and allowing CubeHash to run at
high speeds on a wide variety of computer architectures.

CubeHash does not have the sort of global-scale parallelism that would be
provided by a message-length tree of block hashes. The advantage of a tree is
that it allows very long messages to be split across several processor cores—
but the applications that care can achieve the same benefit by building a tree
on top of CubeHash, the same way that they have traditionally built a tree
on top of SHA–256. (Similar comments apply to incremental hashing etc.) The
disadvantage of a tree is that it cannot be implemented in low area.

Other message-digest sizes. CubeHash supports h-bit output lengths for
every h ∈ {8, 16, 24, . . . , 512}. In particular, CubeHash supports the required
output lengths of 224 bits (28 bytes), 256 bits (32 bytes), 384 bits (48 bytes), and
512 bits (64 bytes). Note that some applications do not need collision resistance
and are satisfied with output lengths significantly below 256 bits.

Good security/speed tradeoff. Extensive third-party analysis has culminated
in a collision attack against CubeHash7/64–512 estimated to take “only” 2203

operations. To put this in perspective, CubeHash7/64 and CubeHash8/64 are
considerably faster than MD5 on the NIST reference platform. It is clear that
the CubeHash design achieves very high security at low cost.

Perhaps CubeHash8/64 will be broken someday, but there is a massive safety
margin between CubeHash8/64 and the original CubeHash8/1, and there is a
very comfortable safety margin between CubeHash8/64 and CubeHash16/32.


