CubeHash round-2 modifications

Daniel J. Bernstein *
Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607-7045
cubehash@box.cr.yp.to

This document describes changes from the round-1 CubeHash submission package to the round- 2 CubeHash submission package.
CubeHash specification (2.B.1) (spec.pdf) defines CubeHashr $/ b-h$ using exactly the same text as the original CubeHash submission; CubeHashr $/ b-h$ is exactly the same function in round 2 that it was in round 1 . However, the recommendations for parameters (r, b) have been updated as described in my note "CubeHash parameter tweak: 16 times faster":

- CubeHash16/32-224 is proposed for SHA-3-224,
- CubeHash16/32-256 is proposed for SHA-3-256,
- CubeHash16/32-384 is proposed for SHA-3-384-normal,
- CubeHash16/32-512 is proposed for SHA-3-512-normal,
- CubeHash16/1-384 is proposed for SHA-3-384-formal, and
- CubeHash16/1-512 is proposed for SHA-3-512-formal.

There is also a new subsection "Additional comments on symmetries" extending the symmetry paragraph in the original submission.

CubeHash efficiency estimates (2.B.2) (estimates.pdf) now summarizes eBASH Core 2 Duo benchmarks for CubeHash, confirming the original efficiency estimates. The document also adds a paragraph discussing microarchitectural variability among Core 2 Duo CPUs and recommending that NIST specify which CPU is actually the reference platform.

CubeHash expected strength (2.B.4) (strength.pdf) has been modified to note the expected impact of quantum computers. Grover's algorithm will find (e.g.) 224-bit preimages for any of the SHA -3 candidates in only about 2^{112} quantum operations. This quantum computer

- has a much higher success chance than a conventional computer performing 2^{200} operations and
- is much more likely to be available to future attackers than a conventional computer performing 2^{200} operations,
so considering the conventional threat while ignoring the quantum threat makes no sense from a risk-analysis perspective.

[^0]CubeHash attack analysis (2.B.5) (attacks.pdf) has been reorganized and expanded. The document includes the description of narrow-pipe attacks that had appeared in the original submission as "CubeHash appendix: complexity of generic attacks." The document also reviews various third-party analyses of CubeHash that have been announced by Aumasson, Bloom, Brier, Dai, Janis, Kaminsky, Khazaei, Khovratovich, Meier, Naya-Plasencia, Nikolic, Peyrin, Rao, Salaev, Wang, Weinmann, and Wilson. The most recent third-party analysis is the Brier-Khazaei-Meier-Peyrin paper "Linearization framework for collision attacks: application to CubeHash and MD6" to appear at Asiacrypt 2009.

CubeHash features (2.B.6) (features.pdf) has been extended to include subsections "Unified implementation across output sizes," "Small code size and vector-code size," and "Good security/speed tradeoff."

[^0]: * The author was supported by the National Science Foundation under grant ITR0716498. Date of this document: 2009.09.15.

