
CubeHash parameter tweak: 16 times faster

Daniel J. Bernstein ?

Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607–7045
cubehash@box.cr.yp.to

Summary. CubeHash is a parametrized family of hash functions CubeHashr/b.
The original CubeHash submission proposed CubeHash8/1 as SHA-3.

This year NIST issued some clarifications of how speed and security will be
evaluated in the SHA-3 competition. The clarifications show that CubeHash8/1
is much more conservative than necessary. In response, this document proposes

• CubeHash16/32–224 for SHA-3–224,
• CubeHash16/32–256 for SHA-3–256,
• CubeHash16/32–384 for SHA-3–384–normal,
• CubeHash16/32–512 for SHA-3–512–normal,
• CubeHash16/1–384 for SHA-3–384–formal, and
• CubeHash16/1–512 for SHA-3–512–formal.

For all real-world cryptographic applications, the “formal” versions here can
be ignored, and this document amounts to a proposal of CubeHash16/32 as
SHA-3. CubeHash16/32 is approximately 16 times faster than CubeHash8/1,
easily catching up to both SHA-256 and SHA-512 on the reference platform.
Despite this speed, CubeHash16/32 is a conservative proposal with a comfortable
security margin. The best attacks known against CubeHash16/32 are the attacks
explained in the original CubeHash submission documents.

CubeHash parameter review. NIST’s SHA-3 submission requirements stated
that a submission “may include a tunable security parameter, such as the num-
ber of rounds, which would allow the selection of a range of possible secu-
rity/performance tradeoffs. . . . The tunable parameter may be used to produce
weakened versions of the submitted algorithm for analysis, and permit NIST to
select a different security/performance tradeoff than originally specified by the
submitter, in light of discovered attacks or other analysis, and in light of the
alternative algorithms that are available.”

CubeHash is parametrized by a pair of positive integers (r, b) with b ≤ 128.
CubeHashr/b applies an r-round transformation after each b-byte message block.

? The author was supported by the National Science Foundation under grant ITR–
0716498. Date of this document: 2009.07.15.

The time taken by CubeHashr/b is approximately proportional to the quotient
r/b.

Extremely fast versions of CubeHashr/b, with small r and large b, are easy
to break in various ways, as explained in the original CubeHash submission.
However, existing security analyses confirm the intuitive idea that doubling r
(and thus doubling the CubeHash time) makes attacks much more difficult;
existing security analyses also confirm the intuitive idea that chopping b in half
(and thus doubling the CubeHash time) makes attacks much more difficult. A
few such doublings produce unbroken versions of CubeHash, and one or two
additional doublings produce versions of CubeHash with a comfortable security
margin.

The original CubeHash submission recommended CubeHash8/1, and stated the
following justification for the recommendation:

For most applications of hash functions, speed simply doesn’t matter.
High-volume network protection with HMAC is sometimes cited as an
exception, but anyone who really cares about speed shouldn’t be using
HMAC anyway; other MACs are faster and inspire more confidence.

What about the occasional applications where hashing speed does mat-
ter? If, after third-party cryptanalysis, the community is convinced that
much faster CubeHashr/b choices are perfectly safe, then I expect those
choices to be considered in speed-oriented applications.

Speed criteria. NIST organized the First SHA-3 Candidate Conference in
Leuven in February 2009, including many presentations of SHA-3 candidates
and several official NIST presentations. The transcript of NIST’s “Security-
Performance Tradeoff” presentation includes the following statement:

It is quite natural that SHA-2 forms a very important benchmark. If
we adjust tunable parameters to run an algorithm as fast as SHA-256,
SHA-512, on these two specified platforms, IA-32 and AMD64, we ask
is the algorithm secure if we tune the parameters to run it as fast as
SHA-2? If it is not, I’m afraid that it hurts its chances to be advanced to
the second round. This is our initial thinking on how to handle tunable
parameters to have an impact on this next selection. Beyond that, we
are not very much paranoid about performance in other platforms. But
this is our sort of threshold. This we mainly focus on.

The subsequent question-and-answer session included another statement from
NIST along the same lines: “If we look at that and whatever we can tune, if it
looks to us like it’s slow compared to SHA-2, it’s going to be very hard to see
how we would ever sell it to the public.”

CubeHash speed review. Here are the eBASH (supercop-20090702) long-
message timings of SHA-256, SHA-512, and CubeHash16/32 on an Intel Core 2
Duo 6f6 (katana) and an Intel Core 2 Duo E8400 1067a (brick):

• 11.47 cycles/byte: CubeHash16/32, brick, amd64 architecture.
• 12.60 cycles/byte: SHA-512, brick, amd64 architecture.
• 12.60 cycles/byte: SHA-512, katana, amd64 architecture.
• 12.66 cycles/byte: CubeHash16/32, katana, amd64 architecture.
• 12.74 cycles/byte: CubeHash16/32, brick, x86 architecture.
• 14.07 cycles/byte: CubeHash16/32, katana, x86 architecture.
• 15.43 cycles/byte: SHA-256, brick, x86 architecture.
• 15.53 cycles/byte: SHA-256, brick, amd64 architecture.
• 15.56 cycles/byte: SHA-256, katana, amd64 architecture.
• 17.76 cycles/byte: SHA-512, brick, x86 architecture.
• 20.00 cycles/byte: SHA-512, katana, x86 architecture.
• 22.76 cycles/byte: SHA-256, katana, x86 architecture.

Note that NIST has specified a 2.4GHz “Intel Core 2 Duo Processor” (without
a microarchitecture specification) as the SHA-3 reference platform.

Security criteria. NIST also announced in Leuven that submissions would be
considered “broken” and discarded if they were subject to attacks using

• 2100 “computations” and 280 “memory” for 224-bit outputs;
• 2120 “computations” and 2100 “memory” for 256-bit outputs;
• 2180 “computations” and 2150 “memory” for 384-bit outputs; or
• 2240 “computations” and 2200 “memory” for 512-bit outputs.

Standard attacks produce disastrous collisions in any SHA-3 candidate using
approximately 2256 hash-function evaluations, with negligible memory consump-
tion and essentially unlimited parallelism. The same attacks have roughly one
chance in a billion of succeeding within 2240 hash-function evaluations. NIST has
not articulated any plan to rescue SHA-3 from such large attacks. Fortunately,
2240 hash-function evaluations are beyond any computation that will ever be
carried out, according to typical estimates.

NIST also announced that submissions would be considered “wounded” if they
were subject to, e.g., a 2128-“computation” preimage attack on a 256-bit hash.
In the absence of statements to the contrary one is forced to conclude that NIST
will consider a 2256-“computation” preimage attack as “wounding” a 512-bit
hash, even though such large attacks will never actually be carried out. It is
interesting to observe that Grover’s algorithm solidly “wounds” every SHA-3
submission according to the same criterion: it computes 256-bit preimages using
only 2128 operations on a small quantum computer, certainly less expensive than
a conventional computer capable of carrying out 2256 operations.

CubeHash security review. The fastest attacks known against this SHA-3
proposal are attacks discussed in the original CubeHash submission documents:

• roughly 2112 operations for collisions in SHA-3–224,
• roughly 2128 operations for collisions in SHA-3–256,
• roughly 2192 operations for collisions in SHA-3–384–normal or formal,
• roughly 2224 operations for preimages in SHA-3–224,
• roughly 2256 operations for preimages in SHA-3–256,
• roughly 2256 operations for collisions in SHA-3–512–normal or formal,
• roughly 2384 operations for preimages in SHA-3–384–normal,
• roughly 2384 operations for preimages in SHA-3–384–formal,
• roughly 2384 operations for preimages in SHA-3–512–normal, and
• roughly 2512 operations for preimages in SHA-3–512–formal.

In particular, the “Complexity of generic attacks” document in the original
CubeHash submission presents details of a “standard generic preimage attack”
using roughly 2512−4b operations for CubeHashr/b; e.g., 2384 operations for
CubeHash16/32.

Summary of other published analyses of CubeHash:

• Aumasson, Meier, Naya-Plasencia, Peyrin, “Inside the hypercube”: Variants
of the standard generic preimage attack, trying to streamline the individual
operations.

• Khovratovich, Nikolic, Weinmann, “Preimage attack on CubeHash512-r/4
and CubeHash512-r/8”: Republication of the same attack.

• Aumasson, “Collision for CubeHash2/120-512”; Dai, “Collisions for Cube-
Hash1/45 and CubeHash2/89”; Brier, Peyrin, “Cryptanalysis of CubeHash”;
Brier, Khazaei, Meier, Peyrin, “Attack for CubeHash-2/2 and collision for
CubeHash-3/64” and “Real Collisions for CubeHash-4/64”: actual collisions
for CubeHash2/3 and CubeHash4/48; estimated collision time slightly below
2200 for CubeHash2/2 and CubeHash4/4.

• Salaev, Rao, “Logical cryptanalysis of CubeHash using a SAT solver”: Some
automated attacks on CubeHash2/b, not as fast as previous attacks.

• Bloom, Janis, “Inference attacks on CubeHash”: Attacks on CubeHashr/128,
similar to previous attacks.

• Wang, Wilson, “Parallel collision search attack on hash function”: Report of
an implementation of the generic van Oorschot–Wiener attack.

None of these analyses affect the security of CubeHash8/1, CubeHash16/32, etc.

The “SHA-3–512–formal” proposal is aimed at users who are (1) concerned with
attacks using 2384 operations, (2) unconcerned with quantum attacks that cost
far less, and (3) unaware that attackers able to carry out 2256 operations would
wreak havoc on the entire SHA-3 landscape, forcing SHA-3 to be replaced no
matter which function is selected as SHA-3. The “SHA-3–512–normal” proposal
is aimed at sensible users.

