
CubeHash specification (2.B.1)

Daniel J. Bernstein ?

Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607–7045
cubehash@box.cr.yp.to

Algorithm summary. CubeHashr/b–h produces an h-bit digest of a variable-
length message. The digest depends on two tunable parameters r, b that allow
the selection of a range of security/performance tradeoffs. CubeHash is defined
for each h ∈ {8, 16, 24, . . . , 512}, each r ∈ {1, 2, 3, . . .}, each b ∈ {1, 2, 3, . . . , 128},
and each message length from 0 bits through 2128 − 1 bits. Third-party crypt-
analysts are encouraged to start with large values of b and small values of r.

Algorithm specification. CubeHashr/b–h has five major steps:

• Initialize a 128-byte (1024-bit) state as a function of (h, b, r).
• Convert the input message into a padded message. The padded message

consists of one or more b-byte blocks.
• For each b-byte block of the padded message: xor the block into the first b

bytes of the state, and then transform the state invertibly through r identical
rounds.

• Finalize the state.
• Output the first h/8 bytes of the state.

Initialization works as follows. The 128-byte state is viewed as a sequence of
32 4-byte words x00000, x00001, x00010, x00011, x00100, . . . , x11111, each of which is
interpreted in little-endian form as a 32-bit integer. The first three state words
x00000, x00001, x00010 are set to the integers h/8, b, r respectively. The remaining
state words are set to 0. The state is then transformed invertibly through 10r
identical rounds.

Padding works as follows. Append a 1 bit to the input message; then append
the minimum possible number of 0 bits to reach a multiple of 8b bits. The bits
in a byte are first 128, then 64, then 32, then 16, then 8, then 4, then 2, then 1.

(History suggests that some, perhaps most, implementations will be restricted
to byte-aligned inputs. These implementations can simply append a 128 byte and
then the minimum possible number of 0 bytes to reach a multiple of b bytes.)

Note that this padding does not require separate storage of the message
length, the block to be processed, etc. The implementor can simply store a
single integer between 0 and 8b to record the number of bits processed so far
within the current block.
? The author was supported by the National Science Foundation under grant ITR–

0716498. Date of this document: 2008.10.28.



Finalization works as follows. The integer 1 is xored into the last state word
x11111. The state is then transformed invertibly through 10r identical rounds.

Each round has the following ten steps:

• Add x0jklm into x1jklm modulo 232, for each (j, k, l, m).
• Rotate x0jklm upwards by 7 bits, for each (j, k, l, m).
• Swap x00klm with x01klm, for each (k, l,m).
• Xor x1jklm into x0jklm, for each (j, k, l, m).
• Swap x1jk0m with x1jk1m, for each (j, k,m).
• Add x0jklm into x1jklm modulo 232, for each (j, k, l, m).
• Rotate x0jklm upwards by 11 bits, for each (j, k, l, m).
• Swap x0j0lm with x0j1lm, for each (j, l, m).
• Xor x1jklm into x0jklm, for each (j, k, l, m).
• Swap x1jkl0 with x1jkl1, for each (j, k, l).

That’s it.

Application specification. CubeHash–h can be used in the same contexts
as SHA–h. Applications such as HMAC that pad to a full block of SHA–h in-
put are required to pad to a full minimal integral number of b-byte blocks for
CubeHashr/b–h.

Parameter recommendations. I recommend

• CubeHash8/1–224,
• CubeHash8/1–256,
• CubeHash8/1–384, and
• CubeHash8/1–512;

i.e., r = 8 and b = 1, independent of the message-digest size.
I see no way to attack r = 4, even with rather large b, so I think that the

half-speed choice r = 8 leaves a comfortable security margin. I also see no way
to attack b = 2, even with rather small r, so I think that the half-speed choice
b = 1 leaves a comfortable security margin. In fact, I think that CubeHash8/1
is much, much, much more conservative than necessary.

Justification for recommending CubeHash8/1: For most applications of hash
functions, speed simply doesn’t matter. High-volume network protection with
HMAC is sometimes cited as an exception, but anyone who really cares about
speed shouldn’t be using HMAC anyway; other MACs are faster and inspire
more confidence.

What about the occasional applications where hashing speed does matter?
If, after third-party cryptanalysis, the community is convinced that much faster
CubeHashr/b choices are perfectly safe, then I expect those choices to be con-
sidered in speed-oriented applications. For the same reason, I expect NIST to
scientifically compare the speeds of different hash-function families by compar-
ing the speeds of the fastest unbroken members of those families—rather than
biasing the comparison according to the speculative initial recommendations of
the hash-function designers.



According to NIST, this document should “provide any bounds that the
designer feels are appropriate for the parameter, including a bound below which
the submitter expects cryptanalysis to become practical.” I hereby declare that,
for every r/b below 1/112, I expect cryptanalysis of CubeHashr/b to become
practical (if it is not already practical). Note that there is no requirement to
comment on—and I am not commenting on—the practicality of cryptanalysis
above the specified bound.

Design rationale and explanation. CubeHash does not include block coun-
ters, block randomizers, etc. The entire argument for those complications is that
state collisions are generically easy to find (compared to the desired preimage
security); but this argument breaks down when the state size is large enough. A
generic attack using an unimaginable 2400 operations has an utterly negligible
chance of finding a collision in CubeHash’s 1024-bit state. In the absence of state
collisions, the state determines the entire previous message, so it determines the
block counter, any block randomizer included earlier in the message, etc.

One might argue that there is no loss in security from including block coun-
ters etc. However, if there is no gain in security, then it makes more sense to
devote the same resources to confidence-building measures such as increasing r
or decreasing b.

Similarly, there is no need to break any of the symmetries of the CubeHash
round. The initial CubeHash states do not have any of those symmetries, and
if b is not too large then the attacker does not have enough control to force a
symmetric state or a pair of states related by those symmetries. I wouldn’t be
surprised if an asymmetric round allows slightly smaller r/b, but it seems to me
that this benefit would be outweighed by the cost in efficiency of each round.

The basic operations in CubeHash—32-bit add, 32-bit xor, and fixed-distance
32-bit rotation—have the virtue of taking constant time on typical CPUs; most
implementations will avoid all software-level side-channel leaks. For compari-
son, most AES software implementations leak their keys through cache timing,
prompting Intel to add constant-time AES instructions to its future “Westmere”
CPUs.

The CubeHash round is designed to spread changes very quickly through the
1024 state bits. The additions and xors directly spread xijklm changes along the
i axis of the (i, j, k, l,m) hypercube; the first swap prevents changes from being
confined along the j axis; the second, third, and fourth swaps do the same for
the l, k, and m axes respectively; the rotations move changes through the 32 bit
positions within each word, in particular diffusing changes from high bits to low
bits. Alternation between add and xor is a common technique to maximize the
apparent randomness of carry bits.

The rotation distances 7, 11 in CubeHash were chosen as follows. Notice that,
modulo 32, {0, 7}+{0, 11}+{0, 7}+{0, 11} = {0, 4, 7, 11, 14, 18, 22, 25, 29}, with
a maximum gap of 4, which is obviously best possible; {0, 7}+{0, 11}+{0, 7} =
{0, 7, 11, 14, 18, 25}, with a maximum gap of 7, which is best possible given the
4; {0, 7}+ {0, 11} = {0, 7, 11, 18}, with a maximum gap of 0− 18 = 14, which is
best possible given the (4, 7). The only other ways to achieve (4, 7, 14) are with



rotation distances 7, 21 or 11, 25 or 21, 25; I took the first choice 7, 11. Carries
also provide some diffusion across nearby bit positions, so the exact choice of
rotation distances doesn’t seem terribly important.

Security arguments and preliminary analysis. “Provable security” can be
a helpful guide to cryptanalysis, allowing cryptanalysts to focus their energies on
the potentially breakable components of a hash function. For example, most hash
functions are built as modes of operation of compression functions; a sufficiently
powerful security proof for a mode of operation lets cryptanalysts focus on the
compression function, confident that the mode per se has no problems. Building
confidence in the hash function then boils down to building confidence in the
compression function, hopefully a simpler task.

CubeHash takes a different approach to building confidence: the entire hash
function is very simple and easy to understand, in fact simpler than most com-
pression functions. CubeHash is not built from a lower-level primitive, so there
are no reduction proofs, but I don’t see this as a disadvantage; the real ques-
tion is not how much work the cryptanalyst can skip, but how much work the
cryptanalyst still has to do.

CubeHash offers an array of fast variants as targets for cryptanalysis. The
main security argument for any particular CubeHashr/b will always be that the
parameters (r, b) are beyond the limits of state-of-the-art attacks.

Preliminary analysis of collision-finding, preimage-finding, second-preimage-
finding, length-extension attacks, multicollision attacks, etc.: These attacks ap-
pear to be extremely difficult. See also the separate “attack analysis” document.


