
CubeHash efficiency estimates (2.B.2)

Daniel J. Bernstein ?

Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607–7045
cubehash@box.cr.yp.to

This document is a statement of CubeHash’s estimated computational effi-
ciency and memory requirements in hardware and software across a variety of
platforms.

General comments. CubeHashr/b xors a b-byte input block to the first b bytes
of its 1024-bit state, applies an invertible transformation consisting of r identical
rounds, and then moves on to the next input block. Consequently CubeHashr/b
uses r rounds for each b-byte block; the time taken by CubeHashr/b is approxi-
mately linear in r/b.

CubeHashr/b–h has an initial overhead of 10r rounds to build an initial state
given the round count r, the block size b, and the output length h. This overhead
can be trivially eliminated at the expense of 128 bytes of constant storage for
each desired (r, b, h).

CubeHashr/b–h also has a final overhead of 10r rounds, approximately the
cost of hashing an additional 10b bytes. For comparison, SHA–256 uses between
8 and 72 bytes of padding, and SHA–512 uses between 16 and 144 bytes of
padding.

Efficiency estimates for the NIST SHA–3 reference platform in 64-bit
mode. Description of platform used to generate the estimates: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed, 2GB RAM,
running Windows Vista Ultimate 64-bit (x64) Edition, using the ANSI C com-
piler in the Microsoft Visual Studio 2005 Professional Edition.

Estimates were generated from the following calculation: The Core 2 Duo
can perform three simple 128-bit vector operations in each cycle. Adding one
vector of four 32-bit words to another is a single vector operation, so the 32
word additions in a CubeHash round are eight vector operations, estimated to
take 8/3 cycles. Similar comments apply to xor. The 32 word rotations can be
implemented as eight copies, sixteen shifts, and eight xors, estimated to take
32/3 cycles. An additional 8/3 cycles are required for eight vector permutations.
Together with loop overhead each round is therefore estimated to take 20 cycles.

Estimated clock cycles for a 512-bit message digest: 200r cycles to compute
the initial state; 20r cycles for each b-byte message block; 200r cycles to compute
the digest. In other words: 20r/b cycles per byte, with an overhead of 20b bytes.

Estimated clock cycles for a 384-bit message digest: Same.
? The author was supported by the National Science Foundation under grant ITR–

0716498. Date of this document: 2008.10.28.



Estimated clock cycles for a 256-bit message digest: Same.
Estimated clock cycles for a 224-bit message digest: Same.
Time-memory tradeoffs: The initial state can be precomputed, as discussed

above, eliminating 10b bytes of overhead.

Efficiency estimates for the NIST SHA–3 reference platform in 32-bit
mode. Description of platform used to generate the estimates: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed, 2GB RAM,
running Windows Vista Ultimate 32-bit (x86) Edition, using the ANSI C com-
piler in the Microsoft Visual Studio 2005 Professional Edition.

Estimates were generated from the following calculation: See above for a
description of the Core 2 Duo’s vector capabilities. Only 8 128-bit vector registers
are available in 32-bit mode; this might seem to be enough for CubeHash, but
rotation uses an extra register, so some extra loads and stores are required. Each
round is therefore estimated to take 25 cycles.

Estimated clock cycles for a 512-bit message digest: 250r cycles to compute
the initial state; 25r cycles for each b-byte message block; 250r cycles to compute
the digest. In other words, 25r/b cycles per byte, with an overhead of 20b bytes.

Estimated clock cycles for a 384-bit message digest: Same.
Estimated clock cycles for a 256-bit message digest: Same.
Estimated clock cycles for a 224-bit message digest: Same.
Time-memory tradeoffs: The initial state can be precomputed, as discussed

above, eliminating 10b bytes of overhead.

Efficiency estimates for 8-bit processors. Description of platform used to
generate the estimates: Atmel ATmega8, 16MHz clock speed, 1024 bytes of static
RAM.

Estimates were generated from the following calculation: An ATmega8 round
is estimated to take approximately 2000 cycles per round. This estimate was
derived from the following comparison to the Core 2 Duo: a Core 2 Duo cycle
performs 12 32-bit operations, typically equivalent to 48 8-bit operations, each
of which takes 1 cycle on the ATmega8; loads and stores are estimated to cost an
extra factor of approximately 2. Note that the CubeHash state fits comfortably
into the static RAM on the ATmega8, and that the hypercube structure in
CubeHash permits some locality of reference.

Estimated clock cycles for a 512-bit message digest: 20000r cycles to compute
the initial state; 2000r cycles for each b-byte message block; 20000r cycles to
compute the digest. In other words: 2000r/b cycles per byte, with an overhead
of 20b bytes.

Estimated clock cycles for a 384-bit message digest: Same.
Estimated clock cycles for a 256-bit message digest: Same.
Estimated clock cycles for a 224-bit message digest: Same.
Time-memory tradeoffs: The initial state can be precomputed, as discussed

above, eliminating 10b bytes of overhead.

Efficiency estimates for ASICs. Description of platform used to generate the
estimates: ASIC built with a standard 130nm process.



Estimates were generated from calculations shown below.
Estimated gate count: A fully unrolled, purely combinatorial round uses 1024

full adders (each 10 gate equivalents) and 1024 xors (each 4 gate equivalents),
plus 1024 D-type flip-flops (each 8 gate equivalents) to store the resulting state,
for a total of approximately 23000 gate equivalents. There are several ways that
this area can be improved without sacrificing speed, for example using the Ling
adder. (On the other hand, to improve clock speed one might also consider using
more gates to reduce adder latency.) The benefit of full unrolling is that each
round takes just one clock cycle.

Estimated clock cycles for a 512-bit message digest: 10r cycles to compute
the initial state; r cycles for each b-byte message block; 10r cycles to compute
the digest. In other words: r/b cycles per byte, with an overhead of 20b bytes.

Estimated clock cycles for a 384-bit message digest: Same.
Estimated clock cycles for a 256-bit message digest: Same.
Estimated clock cycles for a 224-bit message digest: Same.
Time-memory tradeoffs: The parallelism and regular structure of CubeHash

allows a wide variety of choices for the hardware implementor.


